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1 Introduction

Super-resolution is the generative machine learning task of enhancing image resolution while
retaining important visual structures and features. Many state-of-the-art (SOTA) computer vi-
sion models, such as Generative Adversarial Networks (GANs) (Ledig et al., 2017), autoencoders
(Dong et al., 2015), and diffusion models (Ho, Jain, and Abbeel, 2020), have been successfully
applied to super-resolution tasks. These tasks have applications in many domains, such as med-
ical imaging, computer vision, and satellite imagery (Froede, 2023). In this report, we explore
these SOTA models on satellite imagery from the Sentinel-2 and VENµS satellites.

High-resolution satellite imagery can be used for monitoring land cover changes, deforesta-
tion, and disaster response, among many other applications (Njambi, 2023). As such, it would
be desirable to have a satellite that combines the strengths of both Sentinel-2 and VENµS and
captures high-resolution imagery at a global scale. However, deploying a new satellite with these
attributes would be costly. Instead, we apply SOTA models to bridge this gap and simulate
globally available high-resolution satellite imagery.

The SEN2VENµS dataset is an open-data licensed dataset of landscape images (patches)
from the Sentinel-2 and VENµS satellites which have been physically aligned and have undergone
pre-processing stages. Sentinel-2 has a global range but limited resolution, whereas VENµS has
a limited range, but is capable of capturing images at a higher resolution. More specifically,
the Sentinel-2 images have a resolution of 128×128 pixels, whereas the VENµS images have a
resolution of 256×256 pixels, so our super resolution task has an upscaling factor of two.

While there are papers in the literature (Lanaras et al., 2017; Lin and Bioucas-Dias, 2020;
Paris, Bioucas-Dias, and Bruzzone, 2017) that have applied super-resolution to imagery from
these satellites individually, we will need to use imagery from both satellites to upscale the
Sentinel-2 imagery to the resolution capability of VENµS as performed between Sentinel-2 and
Rapid-Eye (Galar et al., 2019), which is a fairly novel task for our satellites (Michel et al., 2022).

We make our code freely available on GitHub1.

2 Methods

We explore three SOTA models that have seen success in various super-resolution tasks: an
autoencoder, a GAN, and a diffusion model.

2.1 Autoencoder

Substantial progress in super-resolution was made by Dong et al. (2015) with the introduction
of Super-resolution Convolutional Neural Network (SRCNN), which we adapt and refer to as
the autoencoder in this paper. Unlike previous sparse-coding methods that involve explicitly
learning and constructing low-resolution and high-resolution dictionaries, the autoencoder is an
end-to-end, feed-forward mapping implemented as a CNN. Figure 1 depicts the autoencoder’s
architecture. Notably, since SRCNN was introduced, more recent work has led to deeper variants
of the network and increased its complexity (Wang et al., 2021a). Nonetheless, we chose to base
our autoencoder on the original SRCNN due to its already impressive performance, and because
our super-resolution task only has an upscaling factor of two.

We now discuss the details of the autoencoder. Before feeding them through the network,
the low-resolution 128×128 images are first prepared by upsampling them to a resolution of
256×256 using bicubic interpolation.

1https://github.com/LimaoC/super-resolution-for-satellite-imagery
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Figure 1: The autoencoder’s architecture. Each mapping can be expressed as a convolutional
layer (Dong et al., 2015).

1. Patch embedding. The first layer consists of n1 filters with a kernel size of f1. By
convolving the filters with each appropriately sized patch across the three colour channels,
the overlapping patches in the image are embedded into a n1-dimensional space, with each
dimension corresponding to a filter. ReLU activation and subsequently a bias term are
applied to the output. This is the encoder part of the autoencoder.

2. Nonlinear embedding. n2 filters with kernel size f2 are applied to the patches in the
first feature space. This further embeds the patches into a lower dimensional space (if
n2 < n1). Once again, ReLU activation and bias are applied to the output.

3. Reconstruction. In this phase, three filters with filter size f3 are applied to the previous
output to obtain the reconstructions. A bias term is also included. In this way, the
predictions in the second feature space are combined in a spatial neighbourhood to produce
the final super-resolved image.

For our model, we set n1 = 64, f1 = 9, n2 = 32, f2 = 5, and f3 = 5. For each convolutional
layer, sufficient padding is applied to ensure that the output size of each hidden layer remains
constant throughout.

Sparsity in super-resolution has been found to improve performance and efficiency. This
is because low-resolution images may contain flat regions with little interesting detail. Con-
sequently, it may not be computationally efficient for a model to learn how to upscale these
uninteresting regions. The autoencoder does to an extent encourage sparsity through the use
of ReLU activation which, combined with its relatively lightweight architecture and impressive
performance, motivates its use in this work. Interestingly, recent work has advanced the use
of sparsity in SR convolutional networks, with promising results (Wang et al., 2021a). Due to
time constraints, such ideas could not be implemented.

2.1.1 Perceptual loss

The naive loss function to use for training the autoencoder is pixel-wise Mean-Squared Error
(MSE). More precisely, if y = {yi}ni=1 are the ground truth high-resolution images, and x =
{xi}ni=1 the corresponding super-resolved images, then the MSE between these batches is given
by

MSE(x,y) =
1

n

n∑
i=1

∥xi − yi∥22. (1)

Although the MSE has highly desirable analytic properties like symmetry, differentiability
and convexity, it fails to quantify more global, structural differences between images that influ-
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ence their visual quality. For instance, blurring an image causes a significant perceptual change
but results in only a small change in MSE, which can be problematic for super-resolution tasks
(Zhang et al., 2018).

Figure 2: VGG-16 architecture
(Theckedath and Sedamkar, 2020)

Johnson, Alahi, and Fei-Fei (2016) proposed an
innovative way of circumventing the shortcomings of
pixel-wise MSE that leverages the ideas of transfer
learning. They suggest that computing MSE between
high-level features in the images will more effectively
optimise the super-resolution process for human vi-
sion. Specifically, the high-level features of the images
are extracted by feeding them through a pre-trained
VGG-16 network (Figure 2), a deep CNN trained on
ImageNet for image classification.

Letting ϕj denote the activation of the jth block,
the perceptual loss is then computed as:

L(x,y) =

n∑
i=1

4∑
j=1

1

CjHjWj
∥ϕj(xi)− ϕj(yi)∥22, (2)

where Cj × Hj × Wj is the shape of the jth block’s
feature map. We only sum over the first four blocks,
as the last block does not capture seminal information. As illustrated, the perceptual loss
between a batch of images is merely the sum of the MSE between the images’ features.

2.2 SRGAN

The Super-Resolution Generative Adversarial Network (SRGAN) (Ledig et al., 2017) features a
CNN generator and discriminator. The generator uses sub-pixel convolution (Shi et al., 2016) to
upsample images. Sub-pixel convolution generates the additional pixels required for the super-
resolution image in the form of additional output channels and then shuffles these back into the
shape of an image. For our problem, we need to map 3×128×128 patch tensors to 3×256×256
corresponding with a factor of two along the width and height. If we apply 3×2×2 filters in a
convolutional layer we will acquire some 12×128×128 output. We reshape this output into our
high-resolution space, shifting pixel data from the 12 channels into a 3×256×256 tensor.

As in the typical GAN framework, training is equivalent to a mini-max game where the
generator tries to create high-resolution images that fool the discriminator into thinking they
are from the ground truth set. For i = 1, 2, . . . , n samples, let xi be the tensor of the ith super-
resolved output patch, yi be the tensor of the ith ground-truth high-resolution patch, pi be the
discriminator’s predicted probability that the super-resolved patch i comes from the ground-
truth set. Let β be a hyperparameter weighing the contribution of the discriminator’s loss.
The generator optimizes the objective function L in Equation (3) that includes an MSE and a
binary-cross-entropy term from the discriminator to optimize for both the raw pixel accuracy
and image sharpness respectively (Ledig et al., 2017).

L =
1

n

n∑
i=1

||xi − yi||22 − β
1

n

n∑
i=1

log(pi) (3)

The discriminator optimizes the standard binary-cross-entropy loss.
Our generator architecture can be seen in Figure 3. In our generator, we use a convolutional

pipeline with residual blocks to learn deep features of the images before applying the so-called
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Figure 3: SRGAN Generator Architecture

Figure 4: SRGAN Discriminator Architecture

sub-pixel convolution to increase resolution. We use skip-connections in our residual blocks
to allow deeper learning without vanishing gradients (He et al., 2015a) and PReLU for the
practical benefits of ReLU while avoiding the dying ReLU problem (He et al., 2015b). We learn
features in a low-resolution space for computational efficiency (Shi et al., 2016). We have one
final convolutional mapping with a tanh activation which produces our super-resolved output.

The final tanh activation layer is a remnant of the original architecture, chosen to prepare the
output for the VGG model to use perceptual loss. We could not successfully apply perceptual
loss to this model so a sigmoid activation layer may have been more appropriate, but we briefly
experimented with this to little success.

We exclude batch normalisation from any generator layers. Batch normalisation generates
more artifacts (Wang, Dong, and Shan, 2022) and has been shown empirically to reduce the
variability of pixel values which is not typically appropriate for super-resolution (Lim et al.,
2017). Excluding batch normalisation improved metrics and eliminated almost all seen artifacts
during testing making it the most impactful design choice for this model.

We used a basic CNN for the discriminator which can be seen in Figure 4. Keeping the
discriminator simple was important for ensuring it did not gain too much advantage during
adversarial training.

2.3 Diffusion

Diffusion models are the current state of the art in image generation tasks, and as such we
were interested in the performance of such a model in our application. We make use of a
Deep Denoising Diffusion Model (DDPM) (Ho, Jain, and Abbeel, 2020) which is intended for
unconditional image generation. During training, the model is given a target image y0, to which
it incrementally adds noise in t time-steps according to some schedule, which is referred to as
the forward process. The forward process will produce several latent images y1,y2, . . . ,yT .
While performing the diffusion process, a U-Net (discussed shortly) simultaneously learns how
to remove the added noise. This is referred to as the reverse process.

During inference, a diffusion model is given some noisy starting image. By using the learned
reverse process, it is able to generate a new image similar to the training examples it has seen
previously. To do this, some noisy starting is sampled and used as input for the U-Net reverse
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Figure 5: Forward and reverse processes (adapted from Ho, Jain, and Abbeel (2020))

process predictor. The output is cycled back as input for several timesteps until the image is
generated.

It should be noted that diffusion models are expensive to train, as for every image, the
U-Net must be applied for each noise time step, which results in many more computations than
other models. Furthermore, evaluation is also costly for the same reason.

2.3.1 Super Resolution Diffusion Model

To achieve super-resolution using the DDPM, we use a key insight from Saharia et al. (2021),
which is to condition the image generation procedure using the low-resolution Sentinel-2 image.
This is achieved by first using a traditional method, in our case bicubic interpolation, to upscale
the low-resolution image to the target resolution. This is then concatenated to the U-Net’s
input during training, providing conditioning for the generation procedure. The high-resolution
image is provided as the ground truth for training, with the intent for the model to learn how
to reproduce high-resolution images given some noisy starting state, and a classically upscaled
image.

The U-Net is a type of CNN, and earns the name from its successive downsampling layers,
followed by successive upsampling layers which replace the pooling layers commonly found in
other CNNs. They are noted for their performance in image segmentation tasks and as such
are commonly used in diffusion models (Ronneberger, P.Fischer, and Brox, 2015). Each U-Net
block will either increase or decrease the resolution dimension of the input by a factor of two.
For example, the first block takes the 256×256 input and reduces it to a 128×128 output. This
is facilitated by ResNet sub-blocks within each U-Net block.

Our U-Net architecture can be seen in Figure 6. The input layer is of dimension 256×256×6,
corresponding to the two RGB images that are used as inputs. The output layer has the same
resolution, but with only 3 channels since it produces a single image. We use six downsampling
blocks, with output channels 128, 128, 128, 256, 256 and 256 respectively. We then use 6
upsampling blocks with a mirrored channel layout. All U-Net blocks are comprised of two
ResNet sub-blocks. Some literature suggested using three blocks instead, but those sources
often considered 4× super-resolution problems rather than our 2× problem (Saharia et al.,
2021). A simpler model afforded us a larger batch size in the GPU memory and was better for
performance. The 5th downsampling block and the 2nd upsampling block are equipped with
spatial attention. The intent was to allow the model to capture features in the image rather
than simply observe pixel-wise differences.

The diffusion model was implemented using the HuggingFace diffusers library (Platen
et al., 2022), which provides convenient tools for creating diffusion models. More details can be
found in our code repository.
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Figure 6: U-Net architecture with block resolution and channels

3 Experiments

We now discuss the specifics of our experimental work, including the data pre-processing steps,
the training details, the evaluation metrics used for each model, and our overall findings.

3.1 Data Subset and Pre-Processing

We had access to 130,000 images in the dataset, but due to hardware constraints, we chose a
smaller subset of 8,159 training patches and 3,498 test patches. Only RGB channels were used
for training due to simplicity and compatibility with existing frameworks. However, wide and
narrow infrared, red-edge and atmospheric bands were also available.

We chose these patches from three sites that exhibited sufficient diversity in geographical
features, namely FR-BIL, SO2 and NARYN. The proportion of each patch class can be seen in
Figure 7.

There are natural inconsistencies that arise between two different satellites. The data had
undergone extensive processing to match colour spectrums, align images and more (Michel et
al., 2022). However, many image pairs were still not consistent in content. Some inconsistencies
include differences in the position of a frame and geographical changes like trees missing in one
of the patches. Along with these inter-satellite differences, there were also general irregularities
in the data.

The original dataset reported RGB colour bands as surface reflectance in the range [0, 1]
(Michel et al., 2022), which is the fraction of light that is reflected from the Earth’s surface.
However, the data contains values larger than unity, so these are likely surface reflectance factors

Figure 7: Diversity of each chosen site (Michel et al., 2022).
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(a) Reflection from the side of
a snowy mountain captured by
Sentinel-2.

(b) Reflection from roof windows
captured by VENµS.

Figure 8: Examples of high reflectance visual anomalies (Hagolle, 2019).

instead (Schaepman-Strub et al., 2006). The terms reflectance and reflectance factor are often
used interchangeably, which can be a source of confusion. Images with reflectance factors larger
than one create visual anomalies, and occur due to highly reflective surfaces such as steep snowy
mountains and roof windows. Two examples can be seen in Figure 8.

One type of processing used in the original dataset was an atmospheric correction. Atmo-
spheric correction considers the absorbing and scattering effects of the atmosphere to estimate
surface reflectance from top-of-atmosphere reflectance measured by remote sensors (Nazeer et
al., 2021). This can sometimes be an over-correction which is well known to lead to infeasible
negative surface reflectance values (Nazeer et al., 2021). We noted this to be the case with the
data. To handle the negative values and outliers of high reflectance, we pre-processed data by
clamping values into the range of [0, 1]. We also experimented with standardising reflectance
values but this did not yield good performance in our exploratory testing.

3.2 Training Details

3.2.1 Autoencoder

The first two layers of the autoencoder used a learning rate of 10−3, whilst a learning rate
of 10−4 was used for the last layer. This was noted in the literature to be important for
convergence (Dong et al., 2015). The Adam optimizer was used due to its desirable properties.
All autoencoder models were trained on an RTX 3060 GPU, which had sufficient memory for
a batch size of at most 32. To ensure reasonable training times, we used this maximum batch
size. Moreover, the initial weights for the filters are sampled from N (0, 10−5), whilst the bias
terms were initialised to zero.

First, we trained an autoencoder using MSE loss for 200 epochs, taking approximately 2
hours in total. To see how perceptual loss influences the metrics and visual quality of the
images, we also trained an autoencoder with perceptual loss. The use of perceptual loss was
found to significantly slow training compared to MSE loss, due to the need to load the large
convolutional blocks onto the GPU, taking approximately 8 hours for 200 epochs.

As seen in Figures 9a and 11, the loss rapidly decreases in the early epochs, and then
gradually decreases in a stable manner.
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3.2.2 SRGAN

The task of the discriminator is much easier in the early stages of training for the SRGAN as
super-resolved outputs remain poor until considerable learning has been completed. This can
lead to a poor optimization surface for the generator leaving it stuck in local minima (Ham,
Jun, and Kim, 2020).

The generator was pre-trained using MSE loss for 75 epochs until the training loss difference
started slowing down to avoid these undesirable local minima. During pre-training a batch size
of 16 was used. A learning rate of 10−4 and weight decay of 10−5 were used with the Adam
optimizer. All other hyperparameters such as weight and bias initialisation were set to the
default PyTorch implementation. Training took 2 hours on an RTX 3060 GPU. On its own,
this generator-only model could produce reasonable super-resolved images.

After the generator had been pre-trained we included the discriminator while training for
an additional 299 epochs. A batch size of 16 was used again. A learning rate of 10−5 and
weight decay of 10−8 were used for both the generator and the discriminator. We weight the
contribution of the discriminator to the generator’s loss by β = 10−6. All other hyperparameters
were set to the default PyTorch implementation. Adversarial training took an additional 14
hours.

The learning curves for the SRGAN can be seen in Figures 9b and 9c. The generator
first learns at a rapid pace followed by a gradual reduction in loss. It should be noted that
visual fidelity still improved greatly even after the initial large reduction in MSE loss. The
discriminator also learns at a rapid pace for the first 50 epochs after it is introduced, after which
the generator learns to more consistently fool it. We found that making the discriminator more
equal in complexity to the generator, for example by increasing the hidden size, often resulted
in more unstable learning and frequent failure modes.

3.2.3 Diffusion

The diffusion model was trained using a noise schedule containing 1000 time steps. An Adam
optimizer was used with a cosine scheduled learning rate maximised at 10−4, and an MSE
loss function. In preliminary testing, it was found that a larger batch size reduced training
times and decreased undesirable tinting on generated images. As such, the model was trained
using an A100 GPU with a batch size of 16, which was the most that could fit on the 40GB
of available GPU memory. The model could only be trained for 13 epochs due to the high
compute requirements, amounting to 6 hours of training. Unfortunately, this was insufficient
time for training and resulted in an underfitted model.

The loss curve for the diffusion model is omitted in Figure 9 as there was an insufficient
number of epochs to observe much movement in the loss.
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(a) Autoencoder perceptual loss. (b) SRGAN generator loss. (c) SRGAN discriminator loss.

Figure 9: Learning curves for each model. Learning curves have been separated due to differing
scales.

3.3 Metrics

We have selected a suite of model metrics that favour different characteristics of a generated
image since there is no universally accepted metric for comparing two images in the field of
computer vision (Zhang et al., 2018). Super-resolution is a one-to-many problem in the sense
that a low-resolution image could plausibly correspond to multiple high-resolution versions. As
such, traditional metrics may penalise generative models for not exactly matching the target
image, even when the model has produced a high-quality image (Saharia et al., 2021).

3.3.1 Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR)

The first two metrics in our test suite are MSE (defined in 1) and PSNR. These are both pixel-
or element-wise measures of difference, though they differ slightly in what exactly they measure.
The PSNR between two images xi,yi can be computed with the following formulas:

PSNR(xi,yi) = 10 log10

(
2552

||xi − yi||22

)
. (4)

The MSE is specifically interested in the difference between two images on a per-element basis,
whereas PSNR is useful for comparing images that differ in their dynamic range (Wang and
Bovik, 2009). However, we expect the images to have similar dynamic range, so we do not
anticipate this PSNR giving us substantially different results to MSE.

It is worth noting that MSE and PSNR are highly localised measures of difference. Conse-
quently, images that minimise the MSE and PSNR should look identical in theory. However,
in practice, these metrics do not lend themselves well to image generation tasks (Saharia et al.,
2021). As we noted previously, super-resolution is a one-to-many task, and MSE and PSNR
may penalise the generative models. We found that two images could have a very small MSE,
but the generated image was noticeably blurry compared to the ground truth.

3.3.2 Structural Similarity Index Measure (SSIM)

To alleviate some of the drawbacks of MSE and PSNR, we consider the SSIM, which takes a
more macroscopic view of the images. Rather than individual pixels, the measure will examine
structural differences across multiple windows across the image. The concept of the structure of
an image refers to the idea that nearby pixels are highly related. In this sense, the SSIM is far
less localised than MSE or PSNR. However, the SSIM cannot discern any high-level features,
and can only make local observations about nearby pixels (Horé and Ziou, 2010). The SSIM
formula has been omitted here due to its complexity and can be found in the appendix.
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3.3.3 Fréchet Inception Distance (FID)

The FID is the most modern metric we consider. It is designed for evaluating generative
models, and to address the shortcomings of the previous metrics, which are not necessarily
suited for evaluating generative model performance (Saharia et al., 2021). The FID compares
the distribution of a set of generated images to a set of ground truth images. We omit many
of the fine details here and only provide a brief overview of how FID is computed. Given two
datasets S and S′, corresponding to the ground truth and generated images respectively, we
consider a distribution function f over these sets of images. A normal distribution is fitted for
each of fS(s) and fS′(s). The FID metric is the Fréchet distance (provided in the appendix)
between these two normal distributions (Heusel et al., 2017). All that is left is to select a
function f . In the PyTorch implementation of FID, this function f is in fact an InceptionV3
CNN which is pre-trained on ImageNet. This network is designed for image analysis and object
detection. A pre-trained network like this will identify higher-level features between the images.
As such, we have a metric that is less focused on absolute differences and instead searches for
feature similarity, which is more ideal for a one-to-many problem. We found that FID was a
better metric for our problem, as models scoring a low FID would produce sharper, high-quality
images.

3.4 Results

Table 1: Model performances. ↑ Higher is better. ↓ Lower is better. Best is in bold.

Model MSE ↓ PSNR ↑ SSIM ↑ FID ↓

Bicubic 4.0248×10−5 43.963 0.98365 1.39640
SRGAN (generator only) 3.1247×10−5 45.068 0.98790 0.97100
SRGAN 2.5226×10−5 45.994 0.98882 0.21432
Autoencoder (MSE loss) 3.3869×10−5 44.772 0.98684 0.94443
Autoencoder (perceptual loss) 3.7610×10−5 44.319 0.98495 0.39390
Diffusion 2.4000×10−2 16.325 0.41917 8.49360

We compared and evaluated the performance of our models against the baseline bicubic in-
terpolation method on a held-out test set of 3,498 patches from the FR-BIL, SO2, and NARYN
sites. Table 1 summarises the quantitative results from these experiments. Specifically, these
results demonstrate that our final SRGAN model had the greatest performance across all test
metrics and successfully outperformed the baseline bicubic interpolation approach. This in-
cluded substantially improving upon the FID metric, with a reduction of approximately 84.7%
from 1.3964 to 0.21432. Most notably, this suggests that the images produced by the SRGAN
model should appear visually sharper and of higher quality than those produced by the bicubic
method. Comparing the results of the pre-trained SRGAN generator before adversarial learning
to those of the final SRGAN model after adversarial learning, the MSE, PSNR, and SSIM all ex-
perienced marginal gains while the FID metric improved significantly from 0.97100 to 0.21432.
This may indicate that adversarial learning is an effective paradigm for the super-resolution
task.

Although the SRGAN model had the best overall performance on the test set, the autoen-
coder also outperformed the baseline bicubic interpolation technique on all metrics. Again, the
most notable improvement was with respect to the FID metric, which was reduced by approxi-
mately 71.8% from 1.3964 to 0.39390. Comparing the results of the two autoencoder models in
Table 1, this improvement was largely the result of training with respect to the VGG perceptual
loss in place of the standard pixel-wise MSE loss. Although this also led to marginal reductions
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(a) Low resolution (b) Ground truth high-resolution (c) Bicubic interpolation

(d) Autoencoder (MSE) (e) Autoencoder (Perceptual) (f) SRGAN

Figure 10: Example high-resolution ground truth and super-resolved images.

in performance for the MSE, PSNR, and SSIM metrics, it is believed that FID is a better indi-
cator of image quality so this trade-off is acceptable. A potential method for overcoming this
trade-off is to train the autoencoder to jointly minimise the MSE and VGG loss.

Finally, the diffusion model had the worst performance of the three architectures we ex-
plored and was unable to surpass the baseline metrics in testing. This was largely the result
of underfitting as the model was too expensive to train sufficiently. Preliminary testing on a
smaller data subset showed promising results, which are included in Figure 13 in the appendix.

Although quantitative evaluation is a useful technique for assessing the quality of the images
produced by our models, it was also necessary to compare their results qualitatively. Figure 10
displays an example of a ground truth high-resolution image along with the up-scaled images
produced by the bicubic interpolation technique and the final autoencoder and SRGAN models.
As we expected from the FID metrics in Table 1, the images produced by the two models produce
visually sharper and more accurate reconstructions of the ground truth compared to the bicubic
method.

4 Conclusion

In this project, we successfully employed deep-learning techniques to perform super-resolution
on satellite imagery. For this purpose, we explored several model architectures including au-
toencoders, generative adversarial networks, and diffusion models. Through evaluation of these
models on a range of test metrics designed to assess both pixel- and feature-wise image similar-
ity, we found that the SRGAN and autoencoder models each outperformed the baseline bicubic
interpolation technique on the super-resolution task. Although the SRGAN had the greatest
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overall performance on the test metrics, qualitatively, the SRGAN and autoencoder models
produced images of similarly high visual quality that surpassed that of the bicubic method.
These results demonstrate the importance of the FID metric in evaluating images produced via
super-resolution.

4.1 Limitations

Although we were able to successfully perform image upscaling using deep-learning techniques,
this approach wasn’t without limitations. One of the main limitations we encountered was with
our dataset. For example, many super-resolution approaches, including the original SRGAN
paper, generate their training datasets by downsampling the ground-truth high-resolution im-
ages (Ledig et al., 2017). In contrast, our training and test datasets were produced by two
different satellites which introduced noise and discrepancies that made learning good models
more difficult. Additionally, the fact that the low-resolution images are only upscaled by a
factor of 2 further limited the performance of our models. Galar et al. (2019) suggests that
most super-resolution networks focus on at least 4x upscaling where the difference between
deep-learning techniques and the bicubic interpolation approach is more significant.

Time and hardware constraints were also major limiting factors in this project. For example,
our final models were only trained on approximately 8% of the full dataset. Despite this, each
model still took between 6 and 14 hours to train completely. These constraints made iterating
and trying new approaches significantly more difficult. Most notably, we believe that this is
the reason for the poor performance of the diffusion model. Both the SRGAN and autoencoder
architectures had the greatest success when trained for a large number of epochs (200 – 400)
and with small learning rates (10−4 – 10−5). This was not possible for the diffusion model which
took 6 hours to complete only 13 epochs with a learning rate of 10−4.

There are also practical limitations to our approach. Most notably, performing image upscal-
ing via deep-learning techniques is more computationally expensive than traditional methods
such as bicubic interpolation. This is most evident in our autoencoder architecture, which
uses both bicubic interpolation and neural networks to produce the final upscaled image. This
introduces a trade-off between accuracy and speed. In some applications, such as real-time
image upscaling where efficiency is most important, the use of traditional, non-deep-learning
approaches may be preferable.

4.2 Future Work

Throughout this project, we have also identified some potential directions for future work.
Firstly, because of the time and hardware constraints we encountered and the success of the
SRGAN architecture, we briefly explored transfer learning of a large pre-trained ESRGAN
(Enhanced SRGAN) model to the task of satellite image upscaling. Details of this approach
are outlined in the appendix and present a possible line of future work. Additionally, although
the VGG loss significantly improved the FID metric for the autoencoder architecture, we were
unable to successfully implement this approach for the SRGAN and diffusion models due to
time constraints. Exploring the use of the VGG loss with these models may result in further
improvements to image clarity, although more research is required. Finally, extending our work
to the full dataset with the implementation of data augmentation and regularisation techniques
is a natural progression of our findings. These extensions would likely be beneficial for model
generalisation in practice.
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Appendix

Autoencoder Training Loss Curve

Figure 11: Learning curve of the autoencoder trained with MSE loss.

Structural Similarity Index Measure

For two images xi,yi of the same dimensions, the SSIM is defined as follows (Horé and Ziou,
2010):

SSIM(xi,yi) = l(xi,yi)c(xi,yi)s(xi,yi) (5)

where

l(xi,yi) =
2µxiµyi + C1

µ2
xi

+ µ2
yi

+ C1
, (6)

c(xi,yi) =
2σxiσyi + C2

σ2
xi

+ σ2
yi

+ C2
, (7)

s(xi,yi) =
σxiyi + C3

σxiσyi + C3
, (8)

where µ and σ are the mean and standard deviation of the images, and C1, C2, C3 are constants
to avoid a null denominator.

Fréchet Distance

The Fréchet Distance between two normal distributions can be calculated as follows (Dowson
and Landau, 1982):

d2(X,Y ) = ||µX − µY ||22 + tr
(
ΣX +ΣY − 2(ΣXΣY )

1
2

)
, (9)

where µ denotes the mean of the respective distributions, and Σ denotes the covariance matrices
of the respective distributions.

Additional Diffusion Results

We omitted images from the diffusion model due to their poor quality, but include an example
in Figure 12 for completeness.
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Figure 12: Diffusion Model Example Image

The final diffusion model did not perform well due to underfitting issues, which is an un-
fortunate consequence of the more expensive training process. However, there is still potential
in the model, and in Figure 2 we present some results from preliminary tests performed on a
smaller data subset. Rather than the 3 sites used for testing our final models, these results
apply to a diffusion model trained and tested on only the SO2 site.

Table 2: Diffusion metrics on SO2 site.

MSE ↓ PSNR ↑ SSIM ↑ FID ↓

2.5046×10−4 36.107 0.92222 5.48320

While these metrics are not as impressive as those of the other final models, they indicate
that with proper training, the full diffusion model may have been able to rival the other models’
performance.

Figure 13 shows an example image from this smaller model. There is some blurriness and
colour inaccuracy, but the image still shows some there is some promise for diffusion as an
upscaling method.

Figure 13: Diffusion Model Example Image trained on only SO2

ESRGAN Model

The ESRGAN model is an extension of the original SRGAN with two predominant changes
(Wang et al., 2018):

1. The model was trained using the perceptual VGG loss.

2. Residual blocks were replaced by a proposed Residual in Residual Dense Block (RRDB).
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The architecture of this block is shown in Figure 14.

Figure 14: Architecture of the RRDB with residual scaling parameter β.

Wang et al. (2018) found that these changes significantly and consistently improved the
visual quality of upscaled images when compared to the original SRGAN architecture. For this
reason, it was believed that similar results may be experienced on the SEN2VENµS dataset.

We followed the procedure outlined by Wang et al. (2021b) to fine-tune a large pre-trained
ESRGANmodel to our satellite imagery dataset. In particular, the model that we used consisted
of 23 RRDB blocks that were pre-trained on the DIV2K and Flickr2K datasets. Because of
our hardware constraints, the goal of this approach was to learn a richer architecture with less
training by transferring the pre-trained features of the ESRGAN model to our dataset. However,
this architecture was too large and only 10K of the suggested 400K training iterations could
be run, which still took approximately 22 hours. As a result, the ESRGAN model performed
poorly on the test metrics which are summarised in Table 3.

Table 3: ESRGAN test metrics.

MSE ↓ PSNR ↑ SSIM ↑ FID ↓

1.1277×10−2 30.987 0.90874 3.10938
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